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Abstract ’

The S-matrix elements for the two-channel atomic scattering system
are not smoothly varying functions; hence some justification must be
given for the appliéation of the stationary phase approximation to the
evaluation of scattering amplitudes for this system. For a specific
example, we show that the contribution to the amplitudes from the
region of rapid variation is negligible compared to the stationary phase
value, since the region of rapid variation is small and the phases vary
sufficiently slowly. The semiclassical interpretation of the oscilla-
tions in the elastic and inelastic cross sections as the "interference"

between two classical trajectories is therefore a valid one.



I. INTRODUCTION

/
It has been convincingly shown! for a wide range of energies and the

range of potentials commonly found in atomic scattering problems that the
JWKB approximation is an excellent approximation to the S—matrix.phase
thfts. In the JWKB approximation each quantum mechanical phase shift
8(£,E) is approximated by the equivalent classical phase shift2:3 A(L,E).

The one-channel scattering amplitude f(8,E) is then expressed as

eziA(z,E)

f(BE) = (2ik)™! % (24 + 1)¢( - 1) Pﬂ(cose) ;‘% A(4,0,E)

and the differential cross section as
o(6,E) =[f(9,E)l2 = %lA(E,e,E)lz + interference terms.

The cross section contains an infinite number of interference terms of
which usually only a few are important. Modern computational techniques!
enable us to calculate f(6,E) and hence 0(6,E) explicitly, given the

phase shifts A(L,E). However, to obtain a physical picture of the
scattering process, it is useful to approximate the scatteri;g amplitude
f(6,E) by its stationary phase value, as essentially the contribution of
one partial wave. The attractiveness of the full semiclaésical treatment--
JWKB approximation together with the stationary phase approximation--
resides in the fact that the differential cross section considered as an
integral over all trajectories? derives solely from the classical Newtonian
trajectory. Quantum mechanical effécts only occur at infinities and dis-

3

continuities of this classical cross section, ® where the simple stationary

phase approximation breaks down.



In the full semiclassical treatment we will say that the differential
cross section derives from the classical trajectory. 1In more complicated
situations, where there is more than one channel open for scattering, we can

often talk of the guantum mechanical interference of these classical terms.

For instance, in He' - He scattering! the scattering amplitude can be well
approximated by a sum of two terms, one derived from the gerade trajectory,
the other from the ungerade trajectory. The oscillations in the differential
cross section are simply the result of the "interference" of these two
trajectories. But this is a trivial case of two-channel scattering, since
the two channels are effectively uncoupled. A much more interesting
system is the inelastic He+ - He scattering system. Mott and Massey®

have argued persuasively tﬁat we can again analyze the cross sections in
terms of the semiclassical picture, as the quantum mechanical interference
of terms derived from classical trajectories. It is the purpose of this
paper to examine whether, in fact, this picture is a useful and reliable

picture of the dynamics of the process.

In section II we examine the question of how smoothly varying the
integrand must be in order to apply the stationary phase method to the
evaluation of an integral. Inrsection I11 we consider a specific two-channel
system and determine the S—matri% elements in a form that cén readily be
interpreted in terms of the semiclassical picture. These elements are not
smoothly varying and consequently we examine how large the contribution
from the region of rapid variation is compared to the stationary phase
evaluation of the amplitude, ignoring the rapid change in the integrand.
We find for a wide range of angles that this contribution is small because
the region of variation is small and the phases are slowly varying. This
latter fact implies that the stationary phase value is large. For more
rapidly varying phases it is conceivable that the two magnitudes are

comparable in size.



Following Green,® we use the Stueckelberg? solution for angular
momentum (£)much less than ﬂc, where ﬁc is the angular momentum corre-
sponding to the coincidence of classical turning points and the
crossing point for the two-channel potentials. For £ in the neighborhood
of ﬁc we solve a simple model in section IV and match the solution for
this model with the Stueckelberg solution for £ < ﬁc. This model in
fact illustrates previous criticism ®'° of the Stueckelberg solution.
We find that matching requires that we amend the Stueckelberg phase T
by the addition of a phase whose magnitude depends on the details of
the coupling potential. Further, the smoothly varying probability
coefficients of Stueckelberg's solution turn out to be oscillatory in

our model.
I1I. THE MULTICHANNEL S-MATRIX

We wish to calculate the elastic and inelastic differential cross
sections for an n-channel, two-body nonrelativistic quantum mechanical
system. Denoting the S-matrix at total energy E and total angular momentum
£ by Sij(ﬁ,E), where i,j = 1,...,n, we determine the scattering amplitudes®
as

_ : 1/277? _
fij(e) = [21(kikj) ] %(zz ¥ 1)(813' éij)PE(e)' (1)

For the one channel case, approximation techniques 2,3 have been evolved
to reduce the summation to a single term, a process that essentially
reduces the quantum mechanical calculation to a classical calculation.

This semiclassical method involves making the following two approximations:

i) P(6) ~ 7r—2————11/2 in [(£ + )8 E] when sin 6 > {1
4 T sin B | si +3 * 3 si .

ii) The summation over £ is replaced by an integral.



Eq. (1) then becomes

2 1/2 o 2i8(9,E) ’
£(6) ~ ’.m:l (-4k)~1 IO dé (24 + 1)#1/2(e - 1)
[ei[(ﬁ+ 1)6 + 1/a] _ e-i[(£+§)9 + ﬂ/4]] (2)

+
where 8(4,E) is the one-channel phase shift. We define N (£,E)
= 26(L4,E) = [(£ + 3)6 + T/a]. The validity of these approximations
requires at least that many partial waves contribute and that the

important contributions derive from partial waves with large values of £,

The final step is provided by the stationary phase approximation,

the conditions for the validity of which we now examine. We consider

the integral _(\) ® iNt (4,E) 2\ . dN+( £, E)
Ii—j‘odf:e £ with A = 0. If — 2= =
for 4 = zoi (i =1,...,k), then the stationary phase approximation states
that
- i 2 s
19 =3 [iN"( 44,5 ] 1/2,i0:( 201, E) (51 /2 3
* i +
(where the prime indicates differentiation with respect to £), provided
that the 4y;'s are well separated.
Let us consider the integral where N_(E,E) is such that k = 1. We
first make the transformation y = N;(ﬂ,E) and, defining g(y) = N:(ﬂ,E),
we determine
© y - .
i ol iy
1(%) = dy g~ (y) e'¥ + dy g~ (y) e~ (4)
- J;o1 y j;oo

the limit yg4,¥o; being defined in Fig. 1, where N_(E,E) for a purely
repulsive potential is plotted. As £ tends to infinity, then N_(ﬂ,E)

tends to £0 and g(y) to.6. In the neighborhood of £,; we could approximate
N(Z,E) by a quadratic (denoted by the dotted curve in Fig. 1) and corre-

spondingly we could approximate g(y) by (2N"(£,E)(y - yo1))'/2 in the



neighborhood of y,,. The integral I(f) would be well approximated using
the quadratic approximation for g(y) and with the range of integration/
extended from yoo to -® if (i) £, is sufficiently large that there is
little variation of the l y - yOI‘_I/Z curve over a period of 2ﬂ‘at Yoo
and (ii) the maximum is not a too asymmetric or narrow peak in that the
change in the differencé between the N_(ﬁ,E) curve and the quadratic
approximation to that curve over a period of 27 in y is small. We know
that as £ tends to infinity the quadratic approximation to g(y) and g(y)
itself have different limits; if this difference is spread sufficiently
thinly over each period of oscillation, then it does not give an extra
contribution to the integral. Thus if we denote the quadratic approxima-
tion to g(y) by gq(y), then for all'y we must have the condition
(e(y +2m - g(y) - gq(y +2M + gq(y)) << 1.
| ® AN (4,B)

In general we need to evaluate the integral If = f dl e
- o

£(4).

If is only approximated by £(4,,) I(f)if the following conditions hold;

i) In the neighborhood of y,, we can approximate f(y) = f(4) by

1/z ;iy) = f(4gy) + £'(%y)

£(y) = £(4oy) + £'(Lo ) [AN"( 4y, , BV ]
[AN"( % -1/2 1/2 ~ .
IN"(44,,E) ] (Y - ¥Yo1) . For f(y) to be slowly varying
in the neighborhood of yg,, the condition f£(4y,)(N"(4y,,E))/2
>> £'(4y,) must be satisfied.
ii) For y not in the immediate vicinity of y,,, the condition
f(y + 2m) - f(y)| << 1 must be satisfied.
We will say that the function f£(£) is slowly varying if these two conditions

are satisfied. For example, if £(£) = £1/2, then 1(1/2 = I(°)ﬁo}/2 only if

£y, is large and the peak is not too broad.



If the phase shift 8(£,E) is such as to satisfy these conditions,

then for k = 1 we can, to a good approximation, determine f(0) as

1/2 - i -
£(0) Cf[;%;x% (" B (2[NS, , 0 /2 N (hon, B (5)

We now examine the-question as to whether and uﬁder what conditions
we can apply the stationary phase approximation to inelastic systems.
For simplicity we consider a two-channel system. The S-matrix is
unitary and by virtue of time reversal invariance is symmetric in the
angular momentum basis. We can therefore represent the two-channel

S~-matrix as

i6, 3i((8,+06;,) + (2n+1)m]
pye

/ple ’
S=

1i ' 10
\‘Pzezl[(91+92) + (2n+1) 1] ’ Plel 2

(6)

where p, , are real and p2 + pZ = 1. If p, and p, were slowly varying

functions of £ in the sense déscribed, then we could apply the stationary
phase method directly to the phases 6, , * (L + )0 + /4] and

30¢6, + 6,) + (2n + 1)1] + [(£ +1)8 + 7/4]. 1In general, however, Py

and p, are not slowly varying functions of £. 1In fact the Stueckelberg”
solution to the inelastic atomic scattering problem gives p, as an

" oscillatory function and p; oscillatory about a nonzero mean value.

In any event this parameterization of the S-matrix is not appropriate
for our purpose, since our aim is not necessarily to calculate cross
sections--this can be done by computer without any semiclassical approxi-

mation--but to derive a formalism that will interpret the cross sections



in terms of essentially classical quantities. We look for a parametri-

zation of the S-matrix that has an obvious physical interpretation.

ITI. PARAMETERIZATION OF THE S-MATRIX

We restrict our considerations to the inelastic atomic scattering
problem where the diabatic channel potentials V,, and V,, are both
repulsive and the coupling potential V,, is only different from
zero in a small neighborhood of the crossing point of the two channel

potentials. We first intiroduce notation to simplify the discussion:

i) P,(r) (pp(r)) is the classical radial momentum in channel 1

(channel 2).

ii) p%(r) (pg(r)) is the classical radial momentum for free motion

in channel 1 (channel 2).
iii) r¢, (r¢,) is the classical turning point in channel 1 (channel 2).

iv) rtg (rtg) is the turning point for free motion in channel 1

(channel 2).

- _ ) o
= = d here Lr
v) 0, , = Lim f?rc]dr Py o(1) I§%1,tz pY ,(r) dr , where [ c]
denotes the maximum of ro and r¢; t».
Te
vi) X1,2 = Irtl £ pl,z(r) dr or zero if Tty to z rg.

vii) X = %, - X and 8y 5 = 8 5 + ¥, .-
viii) k1,2 = p1,2(°°)-



x) vz(r ) is the radial velocity at r = r
c c
: z - 1y 12 (r d .
xi) Y(£,E) = L-Qvlz(rc)J iL[—d—r(V“(rc) - V“(rc) Ive(rc
xii)

cos?@ = exp (-2v(4,E)).

If we are to take the Mott and Massey semiclassical pictu

process seriously, we would expect the differential cross

|7 or zero it 4 = ..

d

re of the inelastic

sections to

. [N . . ; . .
involve "interference'" between the possible classical trajectories, and

we would expect the phases 6; , £X; , to occur natural

S-matrix.

Let us first look at the eigenphase parameterization
Any symmetric unitary matrix (8) can be diagonalized by a

matrix. This can be seen most simply by writing S as

A is a real symmetric matrix. The real orthogonal matri

A

also diagonalizes S.. For the two-channel case we can

U and D matrices as follows:

ly in the

of the S-matrix.

real orthogonal

exp(2il) where

x that diagonalizes

parameterize the

/cos € , sin e /EZiGA , 0
U= \Tsin € , cos 6) ! D= \ 0 , e216B (D
and
/;216A cos?¢ + é216B sin?e , sin € cose(e216A - eZiaB;\
S =/ (8)
\\sine cos €(e2i6A - eZiéB) , e216A sin?e + 62168 cos?¢



In the weak coupling limit, S;, and S,, are the S,, and S,, elements
for the uncoupled problem to lowest order in the coupling constant.
S;2, to lowest order, involves the phases 6A =8, + X% 6B =8, + Xg,
whereas the semiclassical picture would require phases %(51 + 32) + X3
and (8, + 8,) + X,, since these are the classical phases for the
classical trajectories. There is, however, a parameterization that
involves these latter phases:

[cos2pe?i%s 21%z ] e2131

+ sin?@e , sin® cos®p e

s =
Whatever the real functions 31, 32, X172 X2, @ may be, the S-matrix of
(9) is unitary. The solution that Stueckelberg obtained for the two-
channel atomic scattering process was expressed in the form of (9) with
the functions 31, 32,.x1, X2, @ given explicitly at the head of this
section. The surprising feature of this solution is that the cos?g,
sin?@ functions are not oscillatory. The form of these functions is
given in Fig. 2. The solution is only claimed to be valid for £ not
close to Ec. The solution of the equations for 4 close to Zc has been
given by Nykhovskii et al.'® This solution smooths out the discontin-
uities of Stueckelberg's solution, but the sing cos® and sin?yp functions
still fall rapidly to zero for 4 > £c‘ This is also borne out by the

model solved in section IV and by the empirical inelastic differential

cross section.1!

1(31+32)[e21x1_ 21Xz

|

sin® cosy ei(61+32) [ezi')ﬁ_ eZiXZJ’ [Sin2CPGZiX1+C052CPe21X2] e2j_62 /

(9)



We will examine the Stueckelberg solution with the following values
for the potentials and parameters of the system:
o
i) V,, = 10% exp (-r) r ! A~2,

-]
(20.4 x 10%) exp (~-4r) r™1 A”2,

i

i1) Vu,

500 A™2,

iii) V1 2(rc)
Civ) ky Tk, = 200 ATY,

[-]
v) r =1A.
c

For £ in the region of ﬁc we match Stueckelberg's solution with the solution
of the model of section IV. This matching necessitates changing the phase

in the S-matrix from X, ~ X; to X, - X3 + T.

We first examine the elastic differential cross section and to simplify
the argument we introduce additional notation:
1) 8,28, §,=28 +(Xa- X + M.
i1) Nyp,,2(L4E,0) =26, 1, - ((£ +$)0 + /4).

N d
i11) 4;, ,, is the solution of the equation 6 = 232 11,12

2 -1
iv) ld Nll(ﬁ,E,e)l

eyE: (24, + 1)

k2 [0l 2sin@].

k2 [02 2sinf].

v); dlez()Z,E, e) -1 (2112 + 1)
—r

The smoothness of the functions cos?®, sin?p is determined in relation to
the phases N;,, N;, and we plot phase N;; in Fig. 2 for various values
of el If indeed the functions were smooth as defined in Section I, then
the stationary phase method would allow us to write the elastic differ-

ential cross section as®

10



0;1(8,E) = cos®@(4,,,E)(0}) + sin@(4,,,E)(02) + 2sin2@(4,,,E) cos2@(L,,,E)

cos(N; (% 1,BE) - N,,(4,,E)) (cl)t/2(o2)1/2 (10)

with upper and lower envelopes given by
* 2 1vi/2 4 cin2 2y1/272 .
0,7(8,E) = [cos2p(4,,,E)(0}) + sin?@( 4, ,,E)(02) ] ) (11)

For our specific system the phases 6,,, 6,, are monotonically increasing
and the cos2?®, sin?¢ functions are rapidly varying in the range

180 < £ < 200. Before we can justify the use of the stationary phase
approximatioh, we must indicate why the contribution to the amplitude
from this region is unimportant. First let us consider those angles

6 > Gc where ec( ~.15) corresponds to £, = ﬂc. Consider for example

© = 0.40 corresponding to £,, T° 100. For this value of £ both cos2¢

and sin?g are slowly varying functions. The ratio of the magnitude of
thé contribution from the range 180 < {4 < 200 to the stationary phase
value is essentially proportional to n"l(Aﬂ)[N{{(ﬂll,E)]l/z. A4 is an
estimate of the width of the region in £ where cos?9 and sinZg are
rapidly varying and n is the number of oscillations of the phase N;j,; in
that interval. Since for our system N; is small (of the order 10~ 3)
then for n = 1 the correction to the stationary phase value from the
region 180 < £ < 200 is about seven per cent. As 0 decreases toward ec,
then N;; becomes smaller together with n. Close to Gc we can easily
estimate the correction to the stationary phase value, since in the
interval 180 < £ < 200 the phase is essentially constant. The correction

is about 20 per cent. To within 10 per cent the stationary phase approxi-

mation is a good approximation for angles greater than © ~ 0.25

11



From equation.(ll) we can understand the circumstances under which

the upper envelope Glr can rise above the one-channel elastic cross

- section 0}. For angles not close to GC, cosZ@(4,,,E) and sin?@(4,,,E)
are slowly varying and their sum is close to unity (4,, is less than 4,,).
For 01? to rise above Ol for these angles, 07 must be greater than Jj.
As O approaches ec the sum cos?@(4,,,E) + sin?@(%,,,E) becomes markedly
different from unity and for Glr to rise above 0} for these angles G}
must again be greater than 0{. The phenomenon does not occur for our
potentials. If the phenomenon does occur, it is an indication of a
significant difference in the shape of the two channel potentials in the

crossing region.

Both from the form of cos2¢ and from obvious physical considerations,
the effect of decreasing the potential V,,, increasing the difference in
slopes of the channel potentials at rc or increasing the energy is to
lower the magnitude of the correction term relative to the stationary
phase value.

Similarly we can examine the inelastic differential cross section
and again we introduce additional notation. We define the following
functions:

6o1 = 3(6;+8,) = 3(Xp=Xg+ ™.

8oz = 3(8;+8,) + (X~ X+ M.
Nojy = 001 - L[(4+)6 + /4],
Noz = 80, = [(£+3)6 + T/4].

Lo,1(4y,) is the solution of the equation 0 = zgz 80,(0 = 297 802) -

2 -1

L N°1éﬁgl'E) (24,,+1) = [0} 2sin67k2.
2 -1

d*Noy (Lo, ®) | (249,+1) = [02 2sin67kZ.

d4?

The stationary phase approximation to the inelastic differential cross
section 0, ,(0,E) is simply

0,,(8,E) = sin?@( 4y, ,E) cos?@(4y;,E)05 + sin?@(4,,,E) cos?@( £y ,,E) (03)

- 2sin®( 4y, ,E) sin®(4y,,E) cos®( Ly, ,E) cosm(ﬁoz,E)(Oé)l/z

with the upper and lower envelopes given by ' aL

12




:t .
0,2(0,E) = [sing(4y,,E) coscp(ﬂOI,E)(O},)I/2 % sin@(£y,,E) cosp( £y ,,E)

(o2)1/27? (13)

These results were again also determinedvby Green.® For the sine and
cosine functions and the phases, we match the Stueckelberg solution

with the solution from the model in section IV in the transition region.
The stationary phase approximation is a good approximation for angles in
excess of 0.25, and hence we can analyze the oscillations in the inelastic
cross section by means of Eq. (12). However, the simple stationary phase
approximation is of no use in inferring parameters of the system from

the behavior of the initial steep slope of the inelastic cross section.

IV. A TWO-CHANNEL MODEL

We study a particular model for two-channel atomic scattering that
can be solved explicitly using the JWKB solutions for the uncoupled channels
and that contains the salient features of the physical scattering system.
We introduce this model to gain some insight into the behavior of the
solutions for £ in the neighborhood of ﬁc and for £ > lc. Also we wish
to compare this model solution with the Sfueckelberg solution for £ << £c,
since there has been much discussion as to the correctness of that
solution. In 1935 0. K. Rice® published a severe criticism of Stueckelberg's
method and the whole question has again been raised in the detailed work _

? There are two major criticisms. The first is that

of Thorson.
Stueckelberg's method fails for this problem. In Kemble's language!?

there does not exist a good path round the singularities of the JWKB

13



approximation to enable us to match solutions for different ranges of
the variable r. In fact Thorson has argued that fhe constraints on
this path are so severe as to make its existence unlikely. Further, if
such a path exists, then the matching conditions are too few in number
to uniquely determine the solution. Stueckelberg's solution ignores
this arbitrary phase, giving it a value zero.

We consider a two-channel potential problem in which the coupling
potential V,,(r) is a delta function interaction of strength A at radial

distance r = rc. The Schroedinger equations are

a 2 A1 '

- S Vi S - 121 W = avke sGer) (14)
2 I

"'%;2+ Voot —S;;ll - k§] *f(r) = A¢f(r) 6(I‘-rc) (15)

For simplicity we suppose that k; ~k, = k. Let us denote the solution
to the uncoupled equation for channel 1,2 with the correct boundary
condition at r = 0 by W1z,zo and the solution for the uncoupled channel

1,2 that has a behavior at infinity of e+i[kr—1‘r/2(£+1)] [é—i[kr—n/2(£+l)]]
by ¥11,21(V12,22). The boundary conditions at r = r are as follows:

+ - .
¢1,2(rc) = wl’z(rc) where ¢1’2(r23 denotes %lg wLZ(rcie)’

d + -d -
ar W1,2(rc) T Gr ¢1,2(rc) = A ¢2,1(rc)-

It is straightforward to evaluate the S-matrix elements and we state the

result of that calculaticn:

(yo¥y2 = ¥io¥0) - g’¢12 16)
(Vio¥11 - Via¥io) = A ¥y, ¢

Sll = (_)

14



A ¢1o¢20 (¢11¢1é - ¢12¢1{)
S = - Y T T 1 N 17
12 ) (hoo¥21 = V21V20) (Vio¥ii = ¥io¥1s) - A ¥y, an

e A% ¥i0¥20V2y i
A= ' Ty . 8
(‘1120‘4121 - ¢21¢20) (18)

All wave functions are to be evaluated at r = rc. The prime on the
wave functions indicates differentiation with respect to r. These
matrix elements can be greatly simplified by usinglthe fact that the
Wronskian of any two solutions of our differential equation is a
constant function of the variable r. We thus evaluate the Wronskians

at r = ®, For example, (Y ;0¥;1 = ¥10V14) = (+i)e—i(61+xl)

in the.
notation of section III. For 4 << krc we find, using the JWKB solutions

for uncoupled channels, that

(6, +6
S . = (-21) Acsin(x, +7/4) sin(x,+T7/4) e1(01+02) (19)
12 T 1 + AZ sin(x,+T/4) sin(Xp+T/4) el(X;+X,- m/2)
where A, = A (pl(rc)pz(rc))'l/z. For £ ~ £, the solutions are Airy
functions rather than sine cosine functions. For £ << kr, we find,
using the JWKB solutions for uncoupled channels, that
2id; 1 - AZsin(¥,+7/4)sin(X,+1/4) el(xz_X‘) . (20)

S;;, = (Ne

1 + AZsin(x, +7/4) sin(X,+77/4) 1 (X1 +X2=T/2)

The numerical results for the system of section III are plotted in Fig. 2.
We find, in particular, that the cos?¢ and sin®?@ functions are rapidly
varying in the neighborhood of ﬂc. In the range 180 < £ < 200, cos?2¢
falls from unity to 0.5 and rises again to unity. Undoubtedly this

violent functional behavior is accentuated by our choice of the delta

15




function coupling potential. However, a more realistic potential is
still likely to give violent variation, since (1) the delta function
solution joins the Stueckelberg solution smoothly at £ = 180, (ii) for
strong enough coupling cos?¢ is likely to fall to 0.5, and (iii) as 4 .-
is increased cos2?@ rises to unity when the tail of the Airy function
starts to overlap the region where the coupling potential is nonzero.
The smaller this region, the more rapidly cos?yp rises to unity. The
delta function model also indicates that the phase ¥, - ¥X; should be

adjusted, in this case to X, - X; + .

In the region of validity of the Stueckelberg's solution we find
from Eq. (20) that cos®p = 1 - A2 (1 - sin 2%;) and hence cos?yp is an
oscillatory function, not a smoothly varying function as Stueckelberg
found. It therefore seems that essential assumptions have been made
about the details of the coupling interaction in the Stueckelberg

model to render the solution so simple.

V. SUMMARY

We have examined the concept of smoothly varying functions in
relation to the stationary phase approximation for evaluating scattering
amplitudes. The S-matrix elements for the two-channel atomic scattering
problem vary violently in the small region of interaction between the
two channels. However, in spite of this rapid variation the contribution

per cent
to the amplitude from this region is below ten/ for a wide range of

angles, because the region of rapid change is small and the second

derivative of the phase at the secondary phaseé point is small. We

16



model
indicate for a specific/at what angle beyond the critical angle, indicating

the onset of inelasticity, the stationary phase approximation becomes a
good approximation. The interpretation of the oscillations in the

elastic and inelastic cross sections as the "interference" of classical
trajectories is a valid picture, at least for the types of potential we

consider and provided that the Stueckelberg solution is a correct solution.

Acknowledgements:

I would like to thank Dr. F. T. Smith for pointing out the need to
justify the stationary phase approximation and for many discussions on

the problem.

17



Greenman

References:

1. R. P. Marchi and F. T. Smith, Phys. Rev. 139, A1025 (1965). N

2. G. Wentzel, Zeitschr. Phys. 38, 518 (1926); A. H Kramers, Zeitschr.
Phys. 39, 828 (1926); L. Brillouin, C. R. Juli (1926)

3. K. W Ford and J. A. Wheeler, Ann. Phys. (N.Y.)7, 259 (1959).

4. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals
(McGraw Hill, 1965)

5. N. Mott and H. S. W Massey, The Theory of Atomic Collisions
(Clarendon Press, 1965).

6. T. A Green, Phys. Rev. 152(1) 9, 18 (1966).

7. E. C. G. Stueckelberg, Helv. Phys. Acta , 370 (1932).

8. 0. K Rice, J Chem. Phys. 3, 386 (1935).

9. W. Thorson, IVth Intn. Conf. on the Physics of Electronic and Atomic
Collisions (Quebec) (Science Bookcrafters, Inc., Hastings-on-Hudson,
N.Y., 1965) p. 218, p. 220.

10. V. K. Bykhovskii, E. E. Nikitin, and M. Ya. Ovchinnikova, JETP 20,
560 (1965).

11. D. C. Lorents and W. Aberth, private communication.

12, E. C. Kemble, Phys. Rev. 48, 549 (1935).

18



Greenman

Figure Captions: ,

Fig. 1la The function N (4,E,©)

1b The function ‘g(y),—1

Fig. 2 Phase shift N;, and probability coefficients cos?y, sinZg

for the system of section III
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